Analyzing biological network parameters with CentiScaPe

نویسندگان

  • Giovanni Scardoni
  • Michele Petterlini
  • Carlo Laudanna
چکیده

SUMMARY The increasing availability of large network datasets along with the progresses in experimental high-throughput technologies have prompted the need for tools allowing easy integration of experimental data with data derived form network computational analysis. In order to enrich experimental data with network topological parameters, we have developed the Cytoscape plug-in CentiScaPe. The plug-in computes several network centrality parameters and allows the user to analyze existing relationships between experimental data provided by the users and node centrality values computed by the plug-in. CentiScaPe allows identifying network nodes that are relevant from both experimental and topological viewpoints. CentiScaPe also provides a Boolean logic-based tool that allows easy characterization of nodes whose topological relevance depends on more than one centrality. Finally, different graphic outputs and the included description of biological significance for each computed centrality facilitate the analysis by the end users not expert in graph theory, thus allowing easy node categorization and experimental prioritization. AVAILABILITY CentiScaPe can be downloaded via the Cytoscape web site: http://chianti.ucsd.edu/cyto_web/plugins/index.php. Tutorial, centrality descriptions and example data are available at: http://profs.sci.univr.it/ approximately scardoni/centiscape/centiscapepage.php CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological network analysis with CentiScaPe: centralities

The growing dimension and complexity of the available experimental data generating biological networks have increased the need for tools that help in categorizing nodes by their topological relevance. Here we present CentiScaPe, a Cytoscape app specifically designed to calculate centrality indexes used for the identification of the most important nodes in a network. CentiScaPe is a comprehensiv...

متن کامل

Biological network analysis with CentiScaPe: centralities and experimental dataset integration

The growing dimension and complexity of the available experimental data generating biological networks have increased the need for tools that help in categorizing nodes by their topological relevance. Here we present CentiScaPe, a Cytoscape app specifically designed to calculate centrality indexes used for the identification of the most important nodes in a network. CentiScaPe is a comprehensiv...

متن کامل

شناسایی پروتئین‌های کلیدی درگیر در بروز سرطان معده به روش In silico

Background: Gastric cancer is the first most common cancer death in Iran. There have been many efforts in finding the most effective proteins in this cancer. Using the proteins identified in gastric cancer combined with advanced computational tools in analyzing biological networks, we have developed a rational method in order to identify candidate proteins associated with this cancer. Materi...

متن کامل

Prediction of Cohesive Sediment Erosion Rate and Analyzing the Effective Parameters Using Artificial Neural Network

Transferring mechanic of cohesive sediments are different from non-cohesive sediments. For determining the erosion rate of non-cohesive sediments, physical parameters such as average diameter and density are used, such as average diameter and density. Due to the nature of the cohesive sediments, their erosion rates are determined interrelated with the shear stress of the bed with fixed coeffici...

متن کامل

Diagnosis of Breast Cancer using a Combination of Genetic Algorithm and Artificial Neural Network in Medical Infrared Thermal Imaging

Introduction This study is an effort to diagnose breast cancer by processing the quantitative and qualitative information obtained from medical infrared imaging. The medical infrared imaging is free from any harmful radiation and it is one of the best advantages of the proposed method. By analyzing this information, the best diagnostic parameters among the available parameters are selected and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2009